
Java Script Definition
JavaScript (JS) is a lightweight interpreted or just-in-time compiled
programming language with first-class functions. While it is most well-known
as the scripting language for Web pages, many non-browser environments
also use it, such as Node.js, Apache CouchDB and Adobe Acrobat.

JavaScript is a prototype-based, multi-paradigm, dynamic language,
supporting object-oriented, imperative, and declarative (e.g. functional
programming) styles. The programs in this language are called scripts. They
can be written right in a web page’s HTML and executed automatically as the
page loads.

JavaScript can execute not only in the browser, but also on the server, or
actually on any device that has a special program called the JavaScript
engine. The browser has an embedded engine sometimes called a
“JavaScript virtual machine”.

Modern JavaScript is a “safe” programming language. It does not provide
low-level access to memory or CPU, because it was initially created for
browsers which do not require it.

Syntax For Java Script

<script language = "javascript" type = "text/javascript">
 Write JavaScript code Here
</script>

JavaScript Advantages
The biggest advantages to a JavaScript having a ability to produce the same
result on all modern browsers.

1. Client-Side execution: No matter where you host JavaScript, Execute
always on client environment to save a bandwidth and make execution
process fast.

2. User Interface Interactivity: JavaScript used to fill web page data
dynamically such as drop-down list for a Country and State. Base on
selected Country, State drop down list dynamically filled. Another one is

Form validation, missing/incorrect fields you can alert to a users using
alert box.

3. Rapid Development: JavaScript syntax's are easy and flexible for the
developers. JavaScript small bit of code you can test easily on Console
Panel (inside Developer Tools) at a time browser interpret return output
result. In-short easy language to get pick up in development.

4. Browser Compatible: The biggest advantages to a JavaScript having a
ability to support all modern browser and produce the same result.

5. Make XMLHttpRequest() Object: XMLHttpRequest is special JavaScript
object that was designed by Microsoft. XMLHttpRequest object call as a
asynchronous HTTP request to the Server for transferring data both side
without reloading the page.

JavaScript Disadvantages
Biggest disadvantages to a JavaScript, code visible to everyone.

1. Code Always Visible: The biggest disadvantages are code always visible to
everyone anyone can view JavaScript code.

2. Bit of Slow execute: No matter how much fast JavaScript interpret,
JavaScript DOM (Document Object Model) is slow and will be a never fast
rendering with HTML.

3. Stop Render: JavaScript single error can stop to render with entire site.
However browsers are extremely tolerant of JavaScript errors.

JavaScript in <head>...</head> section
If you want to have a script run on some event, such as when a user clicks
somewhere, then you will place that script in the head as follows −

<html>
 <head>
 <script type = "text/javascript">

function sayHello() {
alert("Hello World")

 }
 </script>
 </head>

 <body>
 <input type = "button" onclick = "sayHello()" value = "Say Hello" />
 </body>
</html>

JavaScript in <body>...</body> section
If you need a script to run as the page loads so that the script generates
content in the page, then the script goes in the <body> portion of the
document. In this case, you would not have any function defined using
JavaScript. Take a look at the following code.

<html>
 <head>
 </head>

 <body>
 <script type = "text/javascript">
 <!--
 document.write("UBTER Semester Examination")
 //-->
 </script>

 <p>This is web page body </p>
 </body>
</html>

JavaScript in External File
As you begin to work more extensively with JavaScript, you will be likely to
find that there are cases where you are reusing identical JavaScript code on
multiple pages of a site.

You are not restricted to be maintaining identical code in multiple HTML files.
The script tag provides a mechanism to allow you to store JavaScript in an
external file and then include it into your HTML files.

Here is an example to show how you can include an external JavaScript file
in your HTML code using script tag and its src attribute.

<html>

 <head>
 <script type = "text/javascript" src = "filename.js" ></script>
 </head>

 <body>

 </body>
</html>

JavaScript Variable Scope
The scope of a variable is the region of your program in which it is defined.
JavaScript variables have only two scopes.

Global Variables − A global variable has global scope which means it can be
defined anywhere in your JavaScript code.

Local Variables − A local variable will be visible only within a function where
it is defined. Function parameters are always local to that function.

Within the body of a function, a local variable takes precedence over a global
variable with the same name. If you declare a local variable or function
parameter with the same name as a global variable, you effectively hide the
global variable. Take a look into the following example.

<html>
 <body onload = checkscope();>
 <script type = "text/javascript">
 var myVar = "global"; // Declare a global variable
 function checkscope() {
 var myVar = "local"; // Declare a local variable
 document.write(myVar);
 }
 </script>
 </body>
</html>

The typeof Operator

The typeof operator is a unary operator that is placed before its single
operand, which can be of any type. Its value is a string indicating the data
type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its
operand is a number, string, or boolean value and returns true or false
based on the evaluation.

Here is a list of the return values for the typeof Operator.

Type String Returned by typeof

 Number "number"
 String "string"
 Boolean "boolean"
 Object "object"
 Function "function"
 Undefined "undefined"
 Null "object"

<html>
 <body>
 <script type = "text/javascript">
 var a = 10;
 var b = "String";
 var linebreak = "
";

 result = (typeof b == "string" ? "B is String" : "B is Numeric");
 document.write("Result => ");
 document.write(result);
 document.write(linebreak);

 result = (typeof a == "string" ? "A is String" : "A is Numeric");
 document.write("Result => ");
 document.write(result);
 </script>
 </body>

</html>
JavaScript var statement
JavaScript var statement to declare variables that are scoped to the nearest
function block. Another word we can say function scope variable. If you don't
assign variable's value at declaration time, JavaScript automatically assigns
the undefined value. You can't use variable before the declaration otherwise
gives an error.

Syntax
var variable_name = value;

Parameter
1. var : JavaScript reserved keyword.
2. var_name : Name of the variable.
3. value : Optional, Initial value assign at the time of

declaration.

Shorthand style, you can declare a one or more variables in single statement
separated by comma.

var var1 = val1, var2 = val2, varN = valN;

What is local scope?
A variable that you declare within a function called local scope. Variable can
be accessed within a function, but outside of function you can't. Inside this
function specifies variables with respective values. This all variables have
become a local scope.

function myfun(){
var greetings = "Good morning, have a nice day!";
document.writeln(greetings + '
');

function fun1() {
document.writeln("Hello world!" + '
');

}

fun1();

var myObj = { "commercial": ".com", "network": ".net" };
document.writeln(myObj.commercial);

}

What is global scope?
If you declare variables outside of the function, those variables scopes
globally. You should access variable within function as well as outside of the
function.

var greetings = "Good morning, have a nice day!"; // Global Variable

function fun1() {
 document.writeln("Hello world!" + '
');
}

var myObj = { "commercial" : ".com", "network" : ".net" };

function myfun(){
document.writeln(greetings + '
');
fun1();

 document.writeln(myObj.commercial + '
');
}

myfun();

document.writeln(greetings + '
');
fun1();
document.writeln (myObj.commercial + '
');

JavaScript Data Types with Examples
ECMAScript represents JavaScript Data types. This lesson provide JavaScript
Data Types With Examples. How to define variable in JavaScript. JavaScript
is a loosely data type dynamic language.

JavaScript, also known as ECMAScript specifies six primitive data types and
object type.

JavaScript primitives data types

Number
String
Boolean
Symbol
Null
Undefined

Object data types,
Array
JSON
Function, Object and Properties.

JavaScript Variables are declared using var statement. you can declare
multiple variables at once. No need to append data type when you declare
JavaScript variable. It means any value can store in any variable.

If you not initialize your variable in var statement, It's automatically assume
values is undefined.

JavaScript Number Data types

JavaScript has only one Number (numeric) data types. Number data type
can store normal integer, floating-point values.

A floating-point represent a decimal integer with either decimal points or
fraction expressed (refer to another decimal number).

var num1 = 5; // Numeric integer value
var num2 = 10.5; // Numeric float value
var num3 = -30.47; // Negative numeric float value

var num4 = 5E4; // 5 x 10 Powers of 4 = 50000
var num5 = 5E-4 // 5 x 10 Powers of -4 = -50000

var num6 = 10 / 0; // Number divide by zero, result is: Infinity
var num7 = 10 / -0; // Number divide by negative zero, result is: -Infinity

var num8 = 10, num9 = 12.5; // Multiple variable declare and initialize

JavaScript String Data types
JavaScript string data type represent textual data surrounding to
single/double quotes. Each character is represent as a element that occupies
the position of that string. Index value 0, starting from first character of the
string.

var name = 'Hello, I am run this town.!'; // Single quote
var name = "Hello, I am run this town.!"; // Double quote

Whatever quote you use to represent string, but you should take care that
quote can't repeat in string statement.

var name = "Hello, I'm run this town.!"; // Single quote use inside string
var name1 = ""; // empty string
Note: JavaScript empty string is different from the NULL value.

JavaScript Operators with Example
JavaScript Operators use either value or variable to compute some task. This
lesson describes the JavaScript operators with example, and operators
precedence. JavaScript has following types operators,

Arithmetic Operators
Assignment Operators
Comparison Operators
Logical Operators
Conditional Operator (Ternary Operator)
Bitwise Operators
Miscellaneous Operators
typeof
delete
instanceof
new
this
in

JavaScript Arithmetic Operators

JavaScript arithmetic operator take operand (as a values or variable) and
return the single value.

We are use in our routine life arithmetic operators, addition(+),
subtraction(-), multiplication (*), and division (/) and some other arithmetic
operator are listed below.

We have numeric variable: x = 10, y = 5 and result.

Operator Description Example Results
+ Addition result = x + y result = 15
- Subtraction result = x - y result = 5
* Multiplication result = x * y result = 50
/ Division result = x / y result = 2
% Modulus result = x % y result = 0
++ Increment result = x++
result = x
result = ++x result = 10
result = 11
result = 12
-- Decrement result = x--
result = x
result = --xresult = 12
result = 11
result = 10
<script>
 var x = 10, y = 5;
 document.writeln(x + y); // Addition: 15
 document.writeln(x - y); // Subtraction: 5
 document.writeln(x * y); // Multiplication: 50
 document.writeln(x / y); // Division: 2
 document.writeln(x % y); // Modulus: 0

 document.writeln(x++); // x: 10, x become now 11
 document.writeln(x); // x: 11
 document.writeln(++x); // x become now 12, x: 12

 document.writeln(x--); // x: 12, x become now 11

 document.writeln(x); // x: 11
 document.writeln(--x); // x become now 10, x: 10
</script>
Run it... »

JavaScript Assignment Operators
JavaScript assignment operators assign values to left operand based on right
operand. equal (=) operators is used to assign a values.

We have numeric variable: x = 10, y = 5 and result.

Operator Sign Description Example Equivalent to Results
Assignment= Assign value from one operand to another operand value.

result = x result = x result = 17
Addition += Addition of operands and finally assign to left operand.

result += x result = result + y result = 22
Subtraction -= Subtraction of operands and finally assign to left operand.

result -= y result = result - yresult = 17
Multiplication *= Multiplication of operands and finally assign to left
operand. result *= y result = result * y result = 85
Division /= Division of operands and finally assign to left operand.

result /= y result = result / yresult = 17
Modulus %= Modulus of operands and finally assign to left operand.

result %= y result = result % y result = 2
Bitwise AND &= AND operator compare two bits values return a
results of 1, If both bits are 1. otherwise return 0. result &= y result =
result & y
= 2 & 5
= 0000 0010 & 0000 0101
= 0000 0000 = 0 result = 0
Bitwise OR |= OR operator compare two bits values and return result of
1, If the bits are complementary. Otherwise return 0.result |= y result =
result | y
= 2 | 5
= 0000 0010 | 0000 0101
= 0000 0111 = 7 result = 7

Bitwise XOR ^= EXCLUSIVE OR operator compare two bits values and
return a results of 1, If any one bits are 1 or either both bits one. result
^= y result = result ^ y
= 7 ^ 5
= 0000 0111 ^ 0000 0101
= 0000 0010 = 2 result = 2
Shift Left <<= Shift left operator move the bits to a left side. result <<=
y result = result <<= y
= 2 <<= 5
= 0000 0010 <<= 0100 0000
= 64 result = 64
Shift Right >>= Shift left operator move the bits to a left side. result >>=
y result = result >>= y
= 2 >>= 5
= 0100 0000 >>= 0000 0010
= 2 result = 2
<script>
 var x = 17, y = 5;
 var result = x; // Assignment to left operand(result) base on right
operand(y).
 document.writeln(result);
 document.writeln(result += x);
 document.writeln(result -= y);
 document.writeln(result *= y);
 document.writeln(result /= y);
 document.writeln(result %= y);

 document.writeln(result &= y);
 result = 2; // Reassign value
 document.writeln(result |= y);
 document.writeln(result ^= y);

 document.writeln(result <<= y);
 document.writeln(result >>= y);
</script>
Run it... »

JavaScript Comparison Operators

JavaScript comparison operator determine the two operands satisfied the
given condition. Comparison operator return either true or false.

Operator Sign Description
Equal == If both operands are equal, returns true.
Identical equal === If both operands are equal and/or same data type,
returns true.
Not equal != If both operands are not equal, returns true.
Identical not equal !== If both operands are not equal and/or same
data type, returns true.
Greater than > If left operand larger than right operand, return true.
Less then < If left operand smaller than right operand, return true.
Greater than, equal >= If left operand larger or equal than right
operand, return true.
Less than, equal <= If left operand smaller or equal than right operand,
return true.
<script>
 document.writeln(5 == 5); // true
 document.writeln(5 == '5'); // true
 document.writeln(5 === '5'); // false type not same

 document.writeln(5 != 10); // true
 document.writeln(5 != '10'); // true
 document.writeln(5 !== '10'); // true

 document.writeln(5 > 10); // false
 document.writeln(5 < 10); // true

 document.writeln(5 >= 5); // true
 document.writeln(5 <= 5); // true
</script>
Run it... »

JavaScript Logical Operators (Boolean Operators)
JavaScript logical operators return boolean result base on operands.

Operator Sign Description
Logical AND && If first operand evaluate and return a true, only that
evaluate the second operand otherwise skips.
Return true if both are must be true, otherwise return false.
Logical OR || Evaluate both operands,
Return true if either both or any one operand true,
Return false if both are false.
Logical NOT! Return the inverse of the given value result true become
false, and false become true.
<script>
 document.writeln((5 == 5) && (10 == 10)); // true
 document.writeln(true && false); // false

 document.writeln((5 == 5) || (5 == 10)); // true
 document.writeln(true || false); // true

 document.writeln(5 && 10); // return 10
 document.writeln(5 || 10); // return 5

 document.writeln(!5); // return false
 document.writeln(!true); // return false
 document.writeln(!false); // return true
</script>
Run it... »

JavaScript Conditional Operator (also call Ternary Operator)
JavaScript conditional operator evaluate the first expression(operand), Base
on expression result return either second operand or third operand.

answer = expression ? answer1 : answer2; // condition ? true : false
Example

document.write((10 == 10) ? "Same value" : "different value");
Run it... »

JavaScript Bitwise Operators
JavaScript bitwise operators evaluate and perform specific bitwise (32 bits
either zero or one) expression.

Operator Sign Description
Bitwise AND & Return bitwise AND operation for given two
operands.
Bitwise OR | Return bitwise OR operation for given two operands.
Bitwise XOR ^ Return bitwise XOR operation for given two
operands.
Bitwise NOT ~ Return bitwise NOT operation for given operand.
Bitwise Shift Left << Return left shift of given operands.
Bitwise Shift Right >> Return right shift of given operands.
Bitwise Unsigned Shift Right >>> Return right shift without consider sign of
given operands.
<script>
 document.writeln(5 & 10); // return 0, calculation: 0000 0101 & 0000
1010 = 0000 0000
 document.writeln(5 | 10); // return 15, calculation: 0000 0101 | 0000
1010 = 0000 1111
 document.writeln(5 ^ 10); // return 15, calculation: 0000 0101 ^
0000 1010 = 0000 1111
 document.writeln(~5); // return -6, calculation: ~ 0000 0101 =
1111 1010

 document.writeln(10 << 2); // return 40, calculation: 0000 1010 << 2
= 0010 1000
 document.writeln(10 >> 2); // return 2, calculation: 0000 1010 >> 2
= 0000 0010
 document.writeln(10 >>> 2); // return 2, calculation: 0000 1010 >>>
2 = 0000 0010
</script>
Run it... »

Miscellaneous Operators
typeof
delete
instanceof
new
this
in

typeof
JavaScript typeof operator return valid data type identifiers as a string of
given expression. typeof operator return six possible values: "string",
"number", "boolean", "object", "function", and "undefined".

typeof expression
typeof(expression)
Example

var name = 'Opal Kole';
var age = 48;
var married = true;
var experience = [2010, 2011, 2012, 2013, 2014];
var message = function(){ console.log("Hello world!"); }
var address;

typeof name; // Returns "string"
typeof age; // Return "number"
typeof married; // Return "boolean"
typeof experience; // Return "object"
typeof message; // Return "function"
typeof address; // Return "undefined"
Run it... »

delete
JavaScript delete operator deletes object property or remove specific
element in array.
If delete is not allow (you can't delete if element not exist, array element
undefined etc..) then return false otherwise return true.

delete expression; // delete explicit declare variable

delete object; // delete object
delete object.property;
delete object[property];

delete array; // delete array
delete array[index];

Example

var address = "63 street Ct.";
delete address; // Returns false, Using var keyword you can't delete
add = "63 street Ct.";
delete add; // Returns true, explicit declare you can delete

var myObj = new Object();
myObj.name = "Opal Kole";
myObj.age = 48;
myObj.married = true;

delete myObj.name; // delete object property
delete myObj["count"]; // delete object property

var experience = [2010, 2011, 2012, 2013, 2014]; // array elements
delete experience[2]; // delete 2nd index from array elements
console.log(experience); // [2010, 2011, undefined × 1, 2013, 2014]
Run it... »

instanceof
JavaScript instanceof indicate boolean result, Return true, If object is an
instance of specific class.

object instanceof class
Example

<script>
 var num1 = new Number(15);
 document.writeln(num1 instanceof Number); // Returns true
 var num2 = 10;
 document.writeln(num2 instanceof Number); // Return false

 document.writeln(true instanceof Boolean); // false
 document.writeln(0 instanceof Number); // false
 document.writeln("" instanceof String); // false

 document.writeln(new Boolean(true) instanceof Boolean); // true

 document.writeln(new Number(0) instanceof Number); // true
 document.writeln(new String("") instanceof String); // true
</script>
Run it... »

new
JavaScript new operator to create an instance of the object.

var myObj = new Object;
var myObj = new Object(); // or you can write
 // Object - required, for constructor of the object.

var arr = new Array([argument1, argument2, ..., ..., argumentN]);
 // argument - optional, pass any number of argument in a
object.
Example

var myObj = new Object(); // or you can write: var myObj = new Object;
myObj.name = "Opal Kole";
myObj.address = "63 street Ct.";
myObj.age = 48;
myObj.married = true;

console.log(myObj);
 // Object {name: "Opal Kole", address: "63 street Ct.", age: 48, married:
true}
Run it... »

this
JavaScript this operator represent current object.

this["propertyname"]
this.propertyname
Example

function employee(name, address, age, married) {
 this.name = name;
 this.address = address;

 this.age = age;
 this.married = married;
}
var myObj = new employee("Opal Kole", "63 street Ct.", 48, true);
console.log(myObj);
 // employee {name: "Opal Kole", address: "63 street Ct.", age: 48,
married: true}
Run it... »

in
JavaScript in operator return boolean result if specified property exist in
object.

property in object
Example

<script>
 var myObj = new Object(); // or you can write: var myObj = new
Object;
 myObj.name = "Opal Kole";
 myObj.address = "63 street Ct.";
 myObj.age = 48;
 myObj.married = true;

 document.writeln("name" in myObj); // Returns true
 document.writeln("birthdate" in myObj); // Returns false
 // birthdate propery not in myObj
 document.writeln("address" in myObj); // Returns true
 document.writeln("age" in myObj); // Returns true
 document.writeln("married" in myObj); // Returns true
</script>

